Vegetation Height Model Sentinel NFI

Countrywide vegetation height models (VHM) were generated for Switzerland based on Copernicus Sentinel-2 imagery and the digital terrain model (DTM) swissALTI3D from the Swiss Federal Office of Topography swisstopo. A Convolutional Neural Network (CNN) model was trained to estimate the maximum vegetation height at the spatial resolution of the Sentinel-2 pixel of 10 m. Vegetation heights from the spatially higher-resolved VHM Lidar NFI were used as reference data for the CNN training. Within the framework of the Swiss National Forest Inventory (NFI), the VHMs were modelled annually based on available Sentinel-2 imagery from May – September of the respective year. Further details on the creation of the VHM Sentinel NFI can be found in the paper Jiang et al. (2023, https://doi.org/10.1016/j.srs.2023.100099). Contains modified Copernicus Sentinel data.

Données et ressources

Info additionnelle

Champ Valeur
Identifier 3b1cae17-fc7a-4722-95da-92d3be869273@envidat
Titre pour le URL du Dataset vegetation-height-model-sentinel-nfi
Planifier la publication du jeu de données -
Date de publication 15 mai 2025
Date de la dernière modification 10 juin 2025
Conforme à -
Intervalle d'actualisation -
Couverture temporelle -
Informations relatives à l’éditeur EnviDat
Points de contact
Langues Anglais
URL https://www.envidat.ch/#/metadata/vegetation-height-model-sentinel-nfi
Relation -
Spatial -
Jeux de données relationnels -
Documentation -
Mots clés
Terms of use https://opendata.swiss/terms-of-use#terms_by
Metadata Access API (JSON) Download XML